13

Use unformatted 1/0 for the best performance
in high-volume file processing.

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

14

Using unformatted 1I/0 can lead to portability
problems, because unformatted data is not
portable across all platforms.

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

15

e C++ classic stream libraries
— Enable input and output of chars (single bytes)

 ASCII character set

— Uses single bytes
— Represents only a limited set of characters

 Unicode character set

— Represents most of the world’s commercially viable
languages, mathematical symbols and more

— www.unicode.org

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

16

e C++ standard stream libraries

— Enables 1/0 operations with Unicode characters

— Class template versions of classic C++ stream classes

 Specializations for processing characters of types char and
wchar_t

— wchar_ts can store Unicode characters

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

20

e typedefs in <1ostream> library

— istream
* Represents a specialization of basic_istream
e Enables char input
— OoStream
» Represents a specialization of basic_ostream
e Enables char output
— Jostream
» Represents a specialization of basic_iostream
e Enables char input and output

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

21

e Stream-1/0 template hierarchy

— basic_istreamand basic_ostreamderive from
basic_ios

— basic_iostreamderives from basic_istreamand
basic_ostream

e Uses multiple inheritance

e Stream operator overloading
— Stream insertion operator
o Left-shift operator (<<) is overloaded for stream output

— Stream extraction operator
* Right-shift operator(>>) is overloaded for stream input

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

22

basic ios

AN

basic_istream basic_ostream

N/

basic _iostream

| Stream-1/O template hierarchy portion.

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

23

e Standard stream objects

— 1istreaminstance
e Cin
— Connected to the standard input device, usually the keyboard
— oSstreaminstances
e Ccout

— Connected to the standard output device, usually the display
screen

e Cerr
— Connected to the standard error device
— Unbuffered - output appears immediately
e clog
— Connected to the standard error device
— Buffered - output is held until the buffer is filled or flushed
4)

© 2006 Pearson Education, Inc. All rights reserved.

25

basic_ios
basic_istream basic_ostream
basic_ifstream basic iostream basic ofstream

T

basic fstream

| Stream-1/O template hierarchy portion showing the main file-processing
templates.

<4 »

© 2006 Pearson Education, Inc. All rights reserved.

e 0Stream output capabilities

— Can output
e Standard data types

Characters
Unformatted data

Integers

Floating-point values

Values in fields

26

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

27

e Outputting char * (memory address of a char)

— Cannot use << operator

« Has been overloaded to print char * as a null-terminated
string

— Solution
e Cast the char *toavoid *
— Address is printed as a hexadecimal (base-16) number

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

1 // Fig. 15.3: Figl5_03.cpp 28
2 // Printing the address stored in a char * variable. ()lJt”f1E§

3 #include <iostream>

4 wusing std::cout;

5 wusing std::endl;

6 Figl5_03.cpp
7 1int mainQ

8 { (1of1)

9 char *word = "again";

10

11 // display value of char *, then display value of char *

12 // static_cast to void *

13 cout << "value of word is: " << word << endl

14 << "value of static_cast< void * >(word) is: "

15 << static_cast< void * >(word) << endl;

16 return 0;
17 } // end main

Cast the char * toavoid *

value of word 1is: again
Value of static_cast< void * >(word) is: 00428300

3

Address prints as a hexadecimal
(base-16) number

<4 >

© 2006 Pearson Education,
Inc. All rights reserved.

29

e 0Stream member function put

— Outputs a character
— Returns a reference to the same ostreamobject
e Can be cascaded

— Can be called with a numeric expression that represents an
ASCII value
— Examples
e cout.put('A");
e cout.put('A").put(C '\n');
e cout.put(65);

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

30

e 1stream input capabilities

— Stream extraction operator (overloaded >> operator)
e SKkips over white-space characters
* Returns a reference to the 1 streamobject

— When used as a condition, void * cast operator is

implicitly invoked
« Converts to non-null pointer (true) or null pointer (false)
— Based on success or failure of last input operation

e An attempt to read past end of stream is one such
failure

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

31

e 1Sstream input capabilities (Cont.)
— State bits

e Control the state of the stream
e failbit

— Set if input data is of wrong type
e badbit

— Set if stream extraction operation fails

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

32

e 1stream member function get

— With no arguments
e Returns one character input from the stream

— Any character, including white-space and non-graphic
characters

* Returns EOF when end-of-file is encountered
— With a character-reference argument

e Stores input character in the character-reference argument

* Returns a reference to the 1streamobject

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

33

 1stream member function get (Cont.)
— With three arguments: a character array, a size limit and a
delimiter (default delimiter is '\n')

* Reads and stores characters in the character array

 Terminates at one fewer characters than the size limit or
upon reading the delimiter

— Delimiter is left in the stream, not placed in array

e Null character is inserted after end of input in array

e 1 Stream member function eof

— Returns false when end-of-file has not occurred

— Returns true when end-of-file has occurred

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

© 00 N O o b WON =

10

G i G ('
0O N OO o A WON =

// Fig. 15.4: Figl5_04.cpp

// Using member functions get, put and eof.
#include <iostream>

using std::cin;

using std::cout;

using std::endl;

int main(Q)

{

int character; // use int, because char cannot represent EOF

// prompt user to enter line of text

<< cin.eof () << endl
<< endl;

cout << "Before input, cin.eof() is

<< "Enter a sentence followed by end-of-file:'

// use get to read each character; use put to display it
while ((character = cin.get()) != EOF)
cout.put(character);

_ 34
Outline

Figl5_04.cpp

(1 of 2)

Call eof member function
before end-of-file is reached

while loop terminates when get
member function returns EOF

<4 >

© 2006 Pearson Education,
Inc. All rights reserved.

19 35

20 // display end-of-file character Out”ne

21 cout << "\nEOF 1in this system is: " << character << endl;

22 cout << "After input of EOF, cin.eof() is " <<><in.eof() << endl;

23 return O;

24 } // end main Figl5 04.cpp
Display character, which

Eﬁig:e; Zz:zén(c:;n%gslﬂl:gave:jsbg end-of-file: ety Contalms the value orEOR

Testing the get and put member functions]
Testing the get and put member functions Call eof member function after

" end-of-file is reached

EOF in this sys :
After input of EOF, cin.eo

End-of-file is represented by <ctrl>-z on
Microsoft Windows systems, <ctrl>-d
on UNIX and Macintosh systems.

<4 >

© 2006 Pearson Education,
Inc. All rights reserved.

:SLOG)\IO)U'IDODM—K

N DN DNMNMDMDDNDNDDMDNDN = = o o adoadad
0O NO Ol WDN - OO0 NO”® OGS~ WD

29
30

// Fig. 15.5: Figl5_05.cpp

// Contrasting input of a string via cin and cin.get.
#include <iostream>

using std::cin;

using std::cout;

using std::endl;

int mainQ
{
// create two char arrays, each with 80 elements
const int SIZE = 80;
char bufferl[SIzE];
char buffer2[SIizE];

// use cin to input characters into bufferl
cout << "Enter a sentence:" << endl;
cin >> bufferl;

// display bufferl contents
cout << "\nThe string read with cin was:’'
<< bufferl << endl << endl;

<< end]l

// use cin.get to input characters into buffer2
cin.get(buffer2, Size);

‘ Call three-argument version of
// display buffer2 contents

cout << "The string read with cin.get was:" << endl
<< buffer2 << endl;
return 0O;

} // end main

_ 36
Outline

Figl5_05.cpp

(1 of 2)

Use stream extraction with c¢in

member function get (third
argument is default value '\n")

<4 >

© 2006 Pearson Education,
Inc. All rights reserved.

- Enter a sentence:
. Contrasting string input with cin and cin.get

~ The string rW
- Contrasting

~ The string read with cin.get was:

string input with cin and cin.get

Stream extraction operation reads
up to first white-space character

_ 37
Outline

Figl5_05.cpp

(1 of 2)

get member function reads up to
the delimiter character ' \n'

<4 >

© 2006 Pearson Education,
Inc. All rights reserved.

38

e 1stream member function getline

— (Similar to the three-argument version of get
* Except the delimiter is removed from the stream)

— Three arguments: a character array, a size limit and a
delimiter (default delimiter is '\n"')

* Reads and stores characters in the character array

 Terminates at one fewer characters than the size limit or
upon reading the delimiter

— Delimiter is removed from the stream, but not placed in
the array

e Null character is inserted after end of input in array

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

© 0O N O o b WON =

G G G (i G |
0 N OO o A W N = O

19
20

// Fig. 15.6: Figl5_06.cpp

// Inputting characters using cin member function getline.

#include <iostream>
using std::cin;
using std::cout;
using std::endl;

int mainQ)
{
const int SIZE = 80;
char buffer[SIZE]; // create array of 80 characters

// input characters in buffer via cin function getline
cout << "Enter a sentence:" << endl;
cin.getline(buffer, SIZE);

_ 39
Outline

Figl5_06.cpp

(1 of 1)

// display buffer contents
cout << "\nThe sentence entered is:"
return 0O;

} // end main

Call member function getline

<< endl << buffer << endl;

Enter a sentence:
Using the getline member function

The sentence entered is:)
Using the getline member function

<4 >

© 2006 Pearson Education,
Inc. All rights reserved.

40

e 1stream member function 1gnore

— Reads and discards a designated number of characters or
terminates upon encountering a designated delimiter

e Default number of characters is one
e Default delimiter is EOF

 1stream member function putback

— Places previous character obtained by a get from the
input stream back into the stream

 1stream member function peek

— Returns the next character in the input stream, but does
not remove it from the stream

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

41

e C++ offers type-safe 1/0
— << and >> operators are overloaded to accept data of
specific types

* Attempts to input or output a user-defined type that << and
>> have not been overloaded for result in compiler errors

— If unexpected data is processed, error bits are set

e User may test the error bits to determine 1/0 operation
success or failure

— The program is able to “stay in control”

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

42

e 1 stream member function read

— Inputs some number of bytes to a character array

— If fewer characters are read than the designated number,
failbitisset

e 1stream member function gcount

— Reports number of characters read by last input operation

e 0Stream member function write

— Outputs some number of bytes from a character array

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

© 00 N OO g A WON =

N = = =k ek ek ol ek ol ek ok
© ©W 00 N O o & W N = O

21
22

// Fig. 15.7: Figl5_07.cpp

// Unformatted I/0 using read, gcount and write.

#include <iostream>
using std::cin;
using std::cout;
using std::endl;

int main(Q)

{

const int SIZE = 80;

char buffer[SIzZE]; // create array of 80 characters

// use function read to input characters into buffer

cout << "Enter a sentence:" << endl;

_ 43
Outline

Figl5_07.cpp

(1 of 1)

read 20 bytes from the

cin.read(buffer, 20); <

input stream to buf fer

// use functions write and gcount to display buffer characters
cout << endl << "The sentence entered was:" << endl;

cout.write(buffer, cin.gcount());
cout << endl;
return 0;

} // end main

‘\\\\\\\\\\\\\\‘*-\

write out as many characters as were

read by the last input operation from
buffer to the output stream

Enter a sentence:
Using the read, write, and gcount member functions
The sentence entered was:
Using the read, writ

<4 >

© 2006 Pearson Education,
Inc. All rights reserved.

44

e Stream manipulators perform formatting tasks
— Setting field widths

— Setting precision

— Setting and unsetting format state

— Setting fill characters in fields

— Flushing streams

— Inserting a newline and flushing the output stream

— Inserting a null character and skipping white space in the
input stream

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

45

e Change a stream’s integer base by inserting
manipulators

— hex manipulator
e Sets the base to hexadecimal (base 16)
— OCt manipulator
e Sets the base to octal (base 8)
— dec manipulator
* Resets the base to decimal
— setbase parameterized stream manipulator
» Takes one integer argument: 10, 8 or 16
e Sets the base to decimal, octal or hexadecimal
» Requires the inclusion of the <1omani p> header file
— Stream base values are sticky
* Remain until explicitly changed to another base value <4 >

© 2006 Pearson Education, Inc. All rights reserved.

© 00 N O g b WON =

G G
wWw N = O

// Fig. 15.8: Figl5_08.cpp

// Using stream manipulators hex, oct, dec and setbase.

#include <iostream>

using std

using std:
using std:
using std:
using std:
using std:

#include <iomanip>
using std::setbase;

::cin;
:cout;
:dec;
:endl;
thex;
:oCct;

Parameterized stream manipulator
setbase is in header file <iomanip>

_ 46
Outline

Figl5_08.cpp

(1 of 2)

<4 >

© 2006 Pearson Education,
Inc. All rights reserved.

14 int main(Q

15 {
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

int number;

cout << "Enter a decimal number: ";
cin >> number; // input number

// use hex stream manipulator to show hexadecimal number

cout << number << in hexadecimal 1is: << hex

_ 47
Outline

Figl5_08.cpp

(2 of 2)

<< number << endl; '\\\\\\\\\\\\\

// use oct stream manipulator to show octal number

Set base to hexadecimal

cout << dec << number << in octal is:

<< endl;

<< 0Ct << num
// use setbase stream manipulato show decimal number
cout << setbase(10) << number <<

Set base to octal

<< number << endl;

return 0;

Reset base to decimal

33 } // end main

Enter a decimal number: 20
20 in hexadecimal is: 14
20 in octal is: 24

20 in decimal 1is: 20

<4 >

© 2006 Pearson Education,
Inc. All rights reserved.

48

e Precision of floating-point numbers

— Number of digits displayed to the right of the decimal point
— setprecision parameterized stream manipulator
— precision member function

* When called with no arguments, returns the current
precision setting

— Precision settings are sticky

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

:SLOGD\ImUI-hODM—l

-)
W N

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

// Fig. 15.9: Figl5_09.cpp

// controlling precision of floating-point values.
#include <iostream>

using std::cout;

using std::endl;

using std::fixed;

#include <iomanip>
using std::setprecision;

#include <cmath>
using std::sqrt; // sqrt prototype

int main(Q)

{

_ 49
Outline

Figl5_09.cpp

(1 of 2)

double root2 = sqrt(2.0); // calculate square root of 2

int places; // precision, vary from 0-9

cout << "Square root of 2 with precisions 0-9." << endl

<< "Precision set by ios_base member function

<< "precision:" << endl;

cout << fixed; // use fixed-point notation

// display square root using ios_base function precision

for (places = 0; places <= 9; places++)

{
cout.precision(places); ‘”’“““——ﬂﬂ———————
cout << root2 << endl;

} // end for

Use member function precision to
set cout to display places digits
to the right of the decimal point

<4 >

© 2006 Pearson Education,
Inc. All rights reserved.

31

32 cout << "\nPrecision set by stream manipulator "

33 << "setprecision:" << endl;

34

35 // set precision for each digit, then display square root
36 for (places = 0; places <= 9; places++)

37 cout << setprecision(places) << root2 << endl;

38

39 return 0;
40 } // end main

_ 50
Outline

Figl5_09.cpp

(2 of 2)

Square root of 2 with precisions 0-9.
Precision set by ios_base member function precision:

.4

.41

.414

.4142
.41421
.414214
.4142136
.41421356
.414213562

FRRPRRRRRRRR

Precision set by stream manipulator setprecision:

.4

.41

.414

.4142
.41421
.414214
.4142136
.41421356
.414213562

RFRRRRRRRRR

Use parameterized stream manipulator
setprecision to set cout to
display places digits to the right

of the decimal point

<4 >

© 2006 Pearson Education,
Inc. All rights reserved.

51

* Field width

— (for ostream) Number of character positions in which
value is outputted

 Fill characters are inserted as padding
e Values wider than the field are not truncated
— (for 1stream) Maximum number of characters inputted

e For char array, maximum of one fewer characters than the
width will be read (to accommodate null character)

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

52

e Field width (Cont.)

— Member function width of base class 10s_base
e Sets the field width
e Returns the previous width

— width function call with no arguments just returns the
current setting

— Parameterized stream manipulator setw
e Sets the field width
— Field width settings are not sticky

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

53

The width setting applies only for the next
insertion or extraction (i.e., the width setting
is not “‘sticky”’); afterward, the width is set
implicitly to 0 (i.e., input and output will be
performed with default settings). Assuming
that the width setting applies to all subsequent
outputs is a logic error.

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

54

When a field is not sufficiently wide to handle
outputs, the outputs print as wide as necessary,
which can yield confusing outputs.

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

© 00 N O g b WON =

10

N D DN = = b e ek ok ok ok b
W N = O ©W 0N O o & WON =

24
25

// Fig. 15.10: Figl5_10.cpp

// Demonstrating member function width.
#include <iostream>

using std::cin;

using std::cout;

using std::endl;

int mainQ)
{

int widthvalue = 4;

char sentence[10];

cout << "Enter a sentence:" << endl;
cin.width(5); // input only 5 characters from sentence

// set field width, then display characters based on that width
while (cin >> sentence)
{
cout.width(widthvalue++);
cout << sentence << endl;
cin.width(5); // input 5 more characters from sentence
} // end while

return 0;
} // end main

_ 55
Outline

Figl5_10.cpp

(1 of 2)

<4 >

© 2006 Pearson Education,
Inc. All rights reserved.

56

Enter a sentence:

This is a test of the width member function Ou“lne
This
is
a
tesﬁf Figl5_10.cpp
the
widt (2 0f 2)
h
memb
er
func
tion

<4 >

© 2006 Pearson Education,
Inc. All rights reserved.

57

 Programmers can create their own stream
manipulators

— QOutput stream manipulators
e Must have return type and parameter type ostream &

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

© 00 N O O & WO N =

N D D DM VMDD = dmd om o omd o oemd omd omk o omk owmd o
g A WO N = O © 00N O U & ODNN = O

// Fig. 15.11: Figl5_11.cpp

// Creating and testing user-defined, nonparameterized
// stream manipulators.

#include <iostream>

using std::cout;

using std::flush;

using std::ostream;

// bell manipulator (using escape sequence \a)
ostream& bell(ostream& output)
{

return output << '\a'; // issue system beep
} // end bell manipulator

// carriageReturn manipulator (using escape sequence \r)

ostream& carriageReturn(ostream& output)
{

return output << '\r'; // issue carriage return
} // end carriageReturn manipulator

// tab manipulator (using escape sequence \t)
ostream& tab(ostream& output)
{
return output << '\t'; // issue tab
} // end tab manipulator

_ 58
Outline

Figl5_11.cpp

(1 of 2)

<4 >

© 2006 Pearson Education,
Inc. All rights reserved.

26

27 // endLine manipulator (using escape sequence \n and member
28 // function flush)
29 ostream& endLine(ostream& output)

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

{
return output << '\n' << flush; // issue endl-1like end of line
} // end endLine manipulator
int mainQ)
{
// use tab and endLine manipulators
cout << "Testing the tab manipulator:" << endLine
<< 'a' << tab << 'b' << tab << 'c' << endLine;
cout << "Testing the carriageReturn and bell manipulators:"
<< endLine << ".......... -
cout << bell; // use bell manipulator
// use carriageReturn and endLine manipulators
cout << carriageReturn << "----- " << endLine;
return O;

48 } // end main

Testing the tab manipulator:

b C

a
Testing the carriageReturn and bell manipulators:

_ 59
Outline

Figl5_11.cpp

(20f2)

<4 >

© 2006 Pearson Education,
Inc. All rights reserved.

60

e Stream manipulators specify stream-1/0
formatting

— All these manipulators belong to class 10s_base

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

61

Stream Manipulator Description

skipws
left
right

internal

dec

oct
hex

Skip white-space characters on an input stream. This setting is
reset with stream manipulator noskipws.

Left justify output in a field. Padding characters appear to the
right if necessary.

Right justify output in a field. Padding characters appear to
the left if necessary.

Indicate that a number’s sign should be left justified in a field
and a number’s magnitude should be right justified in that
same field (i.e., padding characters appear between the sign
and the number).

Specify that integers should be treated as decimal (base 10)
values.

Specify that integers should be treated as octal (base 8) values.

Specify that integers should be treated as hexadecimal (base
16) values.

Fig. 15.12 | Format state stream manipulators from <iostream>. (Part 1 of 2)

© 2006 Pearson Education, Inc. All rights reserved.

62

Stream Manipulator Description

showbase Specify that the base of a number is to be output ahead of the
number (a leading O for octals; a leading 0X or OX for
hexadecimals). This setting is reset with stream manipulator
noshowbase.

showpoint Specify that floating-point numbers should be output with a
decimal point. This is used normally with fiXxed to guarantee
a certain number of digits to the right of the decimal point,
even if they are zeros. This setting is reset with stream
manipulator noshowpoint.

uppercase Specify that uppercase letters (i.e., X and A through F) should
be used in a hexadecimal integer and that uppercase E should
be used when representing a floating-point value in scientific
notation. This setting is reset with stream manipulator
nouppercase.

showpos Specify that positive numbers should be preceded by a plus
sign (+). This setting is reset with stream manipulator
noshowpos.

scientific Specify output of a floating-point value in scientific notation.

fixed Specify output of a floating-point value in fixed-point notation
with a specific number of digits to the right of the decimal
point.

Fig. 15.12 | Format state stream manipulators from <iostream>. (Part 2 of 2)

© 2006 Pearson Education, Inc. All rights reserved.

63

e Stream manipulator showpoint
— Floating-point numbers are output with decimal point and
trailing zeros

 Example
— 79.0 prints as 79.0000 instead of 79

— Reset showpo1nt setting with noshowpoint

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

1 // Fig. 15.13: Figl5_13.cpp 64
2 // using showpoint to control the printing of Out"ne

3 // trailing zeros and decimal points for doubles.

4 #include <iostream>

5 wusing std::cout;

6 using std::endl; Figl5_13.cpp
7 wusing std::showpoint;

8 (1 of2)

9 1int main(Q)

10 {

11 // display double values with default stream format

12 cout << "Before using showpoint" << endl

13 << "9.9900 prints as: " << 9.9900 << endl

14 << "9.9000 prints as: " << 9.9000 << endl

15 << "9.0000 prints as: " << 9.0000 << endl << endl;

© 2006 Pearson Education,
Inc. All rights reserved.

16
17
18
19
20
21
22
23

// display double value after showpoint
cout << showpoint
<< "After using showpoint" << endl
<< "9.9900 prints as: " << 9.9900 << endl
<< "9.9000 prints as: " << 9.9000 << endl
<< "9.0000 prints as: " << 9.0000 << endl;
return 0;

24 } // end main

Before using showpoint

9.9900 prints as: 9.99
9.9000 prints as: 9.9
9.0000 prints as: 9

After using showpoint

9.9900 prints as: 9.99000
9.9000 prints as: 9.90000
9.0000 prints as: 9.00000

_ 65
Outline

Figl5_13.cpp

(2 of 2)

<4 >

© 2006 Pearson Education,
Inc. All rights reserved.

66

e Justification in a field

— Manipulator lTeft

* fields are left-justified

e padding characters to the right
— Manipulator right

* fields are right-justified

» padding characters to the left
— Manipulator internal

* signs or bases on the left

— showpos forces the plus sign to print
* magnitudes on the right
e padding characters in the middle

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

:Scoooxlmm.hwn-n

-
N

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

// Fig. 15.14: Figl5_14.cpp

// Demonstrating left justification and right justification.

#include <iostream>

using std:
using std:
using std:
using std::

:cout;
:end1;
:left;

right;

#include <iomanip>

using std:

int main(Q)

{

int x

1setw;

12345;

// display x right justified (default)
cout << "Default 1is right justified:" << endl
<< setw(10) << x;

// use left manipulator to display x left justified
cout << "\n\nUse std::left to left justify x:\n"
<< left << setw(10) << Xx;

// use right manipulator to display x right justified
cout << "\n\nuse std::right to right justify x:\n"
<< right << setw(10) << x << endl;
return 0;
28 } // end main

_ 67
Outline

Figl5_14.cpp

(1 of 2)

© 2006 Pearson Education,
Inc. All rights reserved.

Default is right justified:
12345

Use std::left to left justify x:
12345

Use std::right to right justify x:
12345

_ 68
Outline

Figl5_14.cpp

(2 of 2)

<4 >

© 2006 Pearson Education,
Inc. All rights reserved.

© 00 N O g A WON =

- ek -
N = O

13 {

14 // display value with internal
15 cout << internal << showpos << setw(10) << 123 << endl;

using std:
using std:
using std:
using std:

using std:

int main(Q)

// Fig. 15.15: Figl5_15.cpp

// Printing an integer with internal spacing and plus sign.
#include <iostream>
:cout;
:end1;
:internal;
: showpos;

#include <iomanip>
1setw;

16 return 0;
17 } // end main

spacing and plus sign

+ 123

_ 69
Outline

Figl5_15.cpp

(1 of 1)

<4 >

© 2006 Pearson Education,
Inc. All rights reserved.

70

e Padding in a field

— Fill characters are used to pad a field
e Member function fi11
— Specifies the fill character
» Spaces are used if no value is specified
— Returns the prior fill character
e Stream manipulator setfill

— Specifies the fill character

<4 >

© 2006 Pearson Education, Inc. All rights reserved.

